library(tidyverse)
DF %>%
group_by(group_of_interest) %>%
summarize(n=sum(!is.na(Var_of_interest)),
Mean=mean(Var_of_interest,na.rm=TRUE),
SD=sd(Var_of_interest,na.rm=TRUE))
library(sjPlot)
DF = read.csv("data.csv") #DF is a cross-sectional dataset, with group indicator Group and a few covariates
Mod1 = lm(Outcome1 ~ Group + Age + Sex + Race + BMI, data = DF)
Mod2 = lm(Outcome2 ~ Group + Age + Sex + Race + BMI, data = DF)
Mod3 = lm(Outcome3 ~ Group + Age + Sex + Race + BMI, data = DF)
Mod4 = lm(Outcome4 ~ Group + Age + Sex + Race + BMI, data = DF)
Mod5 = lm(Outcome5 ~ Group + Age + Sex + Race + BMI, data = DF)
tab_model(
Mod1, Mod2, Mod3, Mod4, Mod5,
collapse.se = TRUE, show.ci=FALSE,
pred.labels = c("Intercept", "Group", "Age (years)", "Sex (Female)",
"Race (AA)", "BMI"),
dv.labels = c("Outcome1", "Outcome2","Outcome3","Outcome4","Outcome5"),
string.pred = "Variables",
string.est = "Estimates (SE)")